Ir al contenido principal

Recorridos de un Grafo

Los recorridos de un grafo son de suma importancia, ya que para encontrar un dato en este tipo de estructura, se puede hacer un poco complejo, dependiendo de como este estructurado el grafo, ya que si por ejemplo un nodo del grafo puede estar conectado con el mismo, este tipo de enlace puede enciclar el programa y nunca poder recorrer todos los demás elementos del grafo. En esta sesión vamos a ver los dos tipo de recorridos de un grafo.

Recorrido en profundidad
Trata de buscar los caminos que parten desde el nodo de salida hasta que ya no es posible avanzar más. Cuando ya no puede avanzarse más sobre el camino elegido, se vuelve atrás en busca de caminos alternativos, que no se estudiaron previamente. La búsqueda en profundidad empieza por un vértice V. del grafo G; no visitado; así hasta que no haya mas vértice adyacentes no visitados.

Representación gráfica de un recorrido de profundidad en un grafo

Recorrido en anchura
Supone recorrer el grafo, a partir de un nodo dado, en niveles, es decir, primero los que están a una distancia de un arco del nodo de salida, después los que están a dos arcos de distancia, y así sucesivamente hasta alcanzar todos los nodos a los que se pudiese llegar desde el nodo salida. Este método comienza visitando el vértice de partida A, para continuación visitar los adyacentes que no estuvieron ya visitados. Así sucesivamente con los adyacentes. Este método utiliza una cola como estructura auxiliar en la que se mantienen los vértices que se vayan a procesar posteriormente.

Representación gráfica de recorrido en anchura de un grafo

Por lo tanto, recorrer un grafo consiste en visitar todos los vértices alcanzables a partir de uno dado.

Fuentes:
Presentación de los grafos

Comentarios

Entradas populares de este blog

Árbol Binario

Representación gráfica de un árbol binario  Un árbol binario es un árbol nulo o un árbol cuyos nodos tienen a lo sumo dos hijos. Los hijos de un árbol binario se pueden denotar como hijo izquierdo e hijo derecho. No pueden tener más de dos hijos (de ahí el nombre "binario"). Si algún hijo tiene como referencia a null, es decir que no almacena ningún dato, entonces este es llamado a un nodo externo. En el caso contrario el hijo es llamado un nodo interno. Usos comunes de los árboles binarios son los árboles binarios de búsquedas, los montículos binarios y Codificación de Huffman. Un árbol binario es un árbol en el que ningún nodo puede tener cero, uno o dos hijos (subárboles). Se conoce el nodo de la izquierda como hijo izquierdo y el nodo de la derecha como hijo derecho. Existen tipos de árboles binarios que suelen usarse para fines específicos, como: Árbol binario de búsqueda y Árbol de Fibonnacci. Complejidad: árboles completos Deduciremos, de manera indu...

Abstracción de datos

¿Qué entendemos por abstracción? Pues bien, básicamente es un medio fundamental usado por el ser humano para enfrentarse a la complejidad del mundo. Consiste en básicamente describir o especificar aspectos esenciales e importantes de un fenómeno o entidad, al mismo tiempo que se desechan características irrelevantes según el interés de quien realiza la abstracción, un claro ejemplo sería la imagen que tenemos arriba, en donde se presenta un gato y dos personas con visión diferente con respecto a la mascota, la anciana de la izquierda observa a la criatura de una manera que se le pueda dar amor o cariño, por otra parte, la señora de la derecha, observa al animal de una manera más científica, es decir, se centra más en la cualidades o partes internas del gato. La abstracción de datos en la programación nos ayuda muchas veces a entender los problemas y atacarlos de una manera más sencilla y que la situación que se haya presentado se entienda más fácil, es decir, desechar lo que no oc...

Búsquedas en Listas: Búsqueda Secuencial y Binaria

Procedimiento de las búsquedas Con mucha frecuencia los programadores trabajan con grandes cantidades de datos almacenados en arrays y registros, y por ello será necesario determinar si un array contiene un valor que coincida con un cierto valor clave. El proceso de encontrar un elemento específico de un array se denomina "búsqueda". En esta sección se examinarán dos técnicas de búsquedas: búsqueda lineal o secuencial, la técnica más sencilla, y búsqueda binaria o dicotómica, la técnica más eficiente. Búsqueda Secuencial La búsqueda secuencial busca un elemento de una lista utilizando un valor destino llamado clave. En una búsqueda secuencial (a veces búsqueda lineal), los elementos de una lista o vector se exploran (se examinan) en secuencia, uno después de otro, La búsqueda secuencial es necesaria, por ejemplo, si se desea encontrar la persona cuyo número de teléfono es 958-220000 en un directorio o listado telefónico de su ciudad. Los directorios de teléfono están o...